EE 434 Lecture 22

Bipolar Device Models

Quiz 14

The collector current of a BJT was measured to be 20mA and the base current measured to be 0.1mA. What is the efficiency of injection of electrons coming from the emitter to the collector?

And the number is 1 ⁸ ⁷ 5 3 ⁶ 9 4 2

And the number is 1 ⁸ ⁷ 5 3 ⁶ 9 4 2

Quiz 14

The collector current of a BJT was measured to be 20mA and the base current measured to be 0.1mA. What is the efficiency of injection of electrons coming from the emitter to the collector?

Review from Last Time

- Bipolar device operation dependent upon how minority carriers in base contribute to collector current
- Bipolar model (in high gain region)
 - Diode model for BE junction, injection efficiency for I_{C} α

$$\mathbf{I}_{\mathsf{B}} = \widetilde{I}_{S} \mathbf{e}^{\frac{\mathsf{V}_{\mathsf{BE}}}{\mathsf{V}_{\mathsf{t}}}} \qquad \mathbf{I}_{\mathsf{B}} = \frac{1}{\beta} \mathbf{I}_{\mathsf{C}}$$
$$\mathbf{I}_{\mathsf{C}} = \beta \widetilde{I}_{S} \mathbf{e}^{\frac{\mathsf{V}_{\mathsf{BE}}}{\mathsf{V}_{\mathsf{t}}}} \qquad \mathbf{I}_{\mathsf{C}} = \beta \widetilde{I}_{S} \mathbf{e}^{\frac{\mathsf{V}_{\mathsf{BE}}}{\mathsf{V}_{\mathsf{t}}}}$$

- Bipolar transistor is inherently a current amplifier with exponential relationship between collector current and V_{BE}
 - This property makes BJT very useful

Bipolar Models

Bipolar Models

Simple dc Model

following convention, pick I_C and I_B as dependent variables and V_{BE} and V_{CE} as independent variables

This has the properties we are looking for but the variables we used in introducing these relationships are not standard

It can be shown that $\,\widetilde{I}_{S}\,\,$ is proportional to the emitter area ${\rm A_{E}}\,\,$

Define $\tilde{I}_{S} = \beta^{-1} \mathbf{J}_{\mathbf{S}} \mathbf{A}_{\mathbf{E}}$ and substitute this into the above equations

 J_{S} is termed the saturation current density

Process Parameters : J_S,β

Design Parameters: A_E

Environmental parameters and physical constants: k,T,q

At room temperature, V_t is around 26mV

J_S very small – around .25fA/u²

 J_{S} =.25fA/u² A_E=400u²

 $V_{\rm BE}$ close to 0.6V for a two decade change in $\rm I_{C}$ around 1mA

Transfer Characteristics

 J_{S} =.25fA/u² A_E=400u²

 $V_{\rm BE}$ close to 0.6V for a four decade change in $\rm I_{C}$ around 1mA

Output Characteristics

Better Model of Output Characteristics

Typical Output Characteristics

Forward Active region of BJT is analogous to Saturation region of MOSFET Saturation region of BJT is analogous to Triode region of MOSFET

Typical Output Characteristics

Projections of these tangential lines all intercept the $-V_{CE}$ axis at the same place and this is termed the Early voltage, V_{AF} (actually $-V_{AF}$ is intercept)

Typical values of V_{AF} are in the 100V range

Improved Model

Valid only in Forward Active Region

Improved Model

Termed Ebers-Moll model Reduces to previous model in FA region

Process Parameters: {J_S, α_F , α_R }

Design Parameters: $\{A_E\}$

 α_F is the parameter α discussed earlier α_R is termed the "reverse α "

$$\beta_{\rm F} = \frac{\alpha_{\rm F}}{1 - \alpha_{\rm F}} \qquad \beta_{\rm R} = \frac{\alpha_{\rm R}}{1 - \alpha_{\rm R}}$$

Typical values for process parameters:

$$J_{\rm S} \sim 10^{-16} {\rm A}/{\mu^2}$$
 $\beta_{\rm F} \sim 100$, $\beta_{\rm R} \sim 0.4$

Ebers-Moll model

$$I_{E} = -\frac{J_{S}A_{E}}{\alpha_{F}} \left(e^{\frac{V_{BE}}{V_{t}}} - 1 \right) + J_{S}A_{E} \left(e^{\frac{V_{BC}}{V_{t}}} - 1 \right)$$

$$V_{t} = \frac{kT}{q}$$

$$I_{C} = J_{S}A_{E} \left(e^{\frac{V_{BE}}{V_{t}}} - 1 \right) - \frac{J_{S}A_{E}}{\alpha_{R}} \left(e^{\frac{V_{BC}}{V_{t}}} - 1 \right)$$

With typical values for process parameters in forward active region (V_{BE} ~0.6V, V_{BC} ~-3V), with V_t =26mV and if A_E =100 μ^2 :

$$J_{S} \sim 10^{-16} \text{A}/\mu^{2} \qquad \beta_{F} \sim 100, \quad \beta_{R} \sim 0.4$$

$$I_{C} = J_{S} A_{E} \left(e^{\frac{V_{BE}}{V_{t}}} - 1 \right) - \frac{J_{S} A_{E}}{\alpha_{R}} \left(e^{\frac{V_{BC}}{V_{t}}} - 1 \right)$$

$$I_{C} = \frac{10^{-14} \left(1.05 \times 10^{10} \right)}{\text{Completely}} - 1 - \frac{10^{-14}}{.28} \left(7.7 \times 10^{-51} - 1 \right)$$

Makes no sense to keep anything other than $\mathbf{I}_{c} = \mathbf{J}_{s}A_{E} \left(\mathbf{e}^{v_{t}} \right)$ in forward active

Alternate equivalent expressions for dependent variables $\{I_C, I_B\}$ defined earlier for Ebers-Moll equations in terms of independent variables $\{V_{BE}, V_{CE}\}$

$$I_{c} = J_{s}A_{E}e^{\frac{V_{BE}}{V_{t}}}\left(1 - \left[\frac{1 + \beta_{R}}{\beta_{R}}\right]e^{\frac{-V_{CE}}{V_{t}}}\right)$$
$$I_{B} = J_{s}A_{E}e^{\frac{V_{BE}}{V_{t}}}\left(\frac{1}{\beta_{F}} - \frac{1}{\beta_{R}}e^{\frac{-V_{CE}}{V_{t}}}\right)$$

No more useful than previous equation but in form consistent with notation Introduced earlier

Simplified Multi-Region Model

Simplified Multi-Region Model

A small portion of the operating region is missed with this model but seldom operate in the missing region

A small portion of the operating region is missed with this model but seldom operate in the missing region